



# WEDGE PART OF AN ALTAR CROWN SUSPENSION - P-RICH IRON AND HYPOEUTECTOID STEEL - MODERN TIMES - SWITZERLAND

Artefact name Wedge part of an altar crown suspension

Authors Marianne. Senn (Empa, Dübendorf, Zurich, Switzerland) & Christian. Degrigny (HE-Arc CR, Neuchâtel, Neuchâtel, Switzerland)

Url /artefacts/1240/

## 



Credit HE-Arc CR.

Fig. 1: Wedge part of an altar crown suspension (after Hadzic 2008, 2),

# ▼ Description and visual observation

Description of the artefact Construction element used for suspension of an altar crown (Fig. 1) covered with a thin orange-brown corrosion layer.

Type of artefact Supporting structure

Origin Abbey of Rheinau, Zürich, Zurich, Switzerland

Recovering date 1720 AD

Chronology category Modern Times

chronology tpq 1720 A.D. ✓

chronology taq

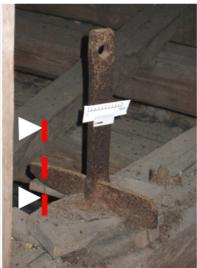
Chronology comment

Burial conditions / environment Indoor atmosphere

Artefact location Abbey of Rheinau, Zürich, Zurich

**Owner** Canton of Zurich, Zurich

Inv. number None


Recorded conservation data Not conserved (machine brushed)

Complementary information

None.

Study area(s)

Fig. 2: Location of sampling area,



Credit HE-Arc CR.

▼ Binocular observation and representation of the corrosion structure

None.

# 

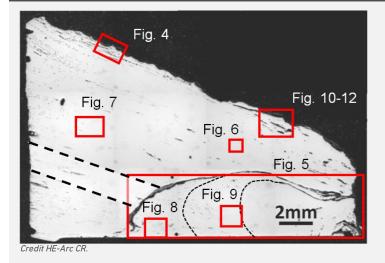



Fig. 3: Micrograph of the cross-section of the sample taken from the wedge part showing the location of Figs. 4 to 12. Steel areas are delimited by black dotted lines,

**Description of sample**This sample is a section from the end of the wedge part (Fig. 2). The corrosion crust appears on the top side on Fig. 3.

Alloy P-rich iron and hypoeutectoid steel

Technology Annealed after (hot) rolling

Lab number of sample RHE1-NR

Sample location Haute École Arc Neuchâtel, Neuchâtel

Responsible institution IWT (Naila Hadzic), Wallisellen, Zurich

**Date and aim of sampling**January 2008, material testing and security report

Complementary information

None.

#### 

#### Analyses performed:

Metallography (nital etched and etched with Oberhoffer's reagent), Vickers hardness testing, LA-ICP-MS, SEM/EDS.

#### ➤ Non invasive analysis

None

#### Meta

The remaining metal (M1) is a P-rich iron (0.3-0.45 mass%) with two zones (M3) consisting of soft, hypoeutectoid steel (C content 0.2 mass%) (Fig. 3 and Table 1). The P-rich iron contains many elongated stag inclusions of various sizes forming parallel rows (Figs. 3 and 4). The number of stag inclusions is higher than in bloomery iron and their distribution is typical for rolled metal. A crack, partially filled by hammer scale and corrosion products, indicates a poor quality welding seam (Fig. 3). Below the inclusions the curve produced by forging is highlighted. In good quality wrought iron stag inclusions are small, uniformly distributed and have identical compositions (Boesenberg 2006, 622). This is not the case in this sample, but can be explained by the rudimentary rolling process of the 18<sup>th</sup> century. The chemical composition of the stag inclusions shows that iron oxides dominate, beside phosphorus oxide, calcium oxide and silica (Table 2). The composition is typical for stag formed by hearth refining of pig iron (Dillmann and L'Héritier 2007). During this process, the pig iron is oxidised. The oxidising elements are Si, P, Mn, V and Cr. The analyzed stag inclusions contain more Fe than most published ones. The high P content is similar to published examples from the 18<sup>th</sup> century (Dillmann and L'Héritier 2007, 1820). The high calcium oxide content, which is often combined with high silica content, could originate from the addition of both materials while refining the pig iron to better eliminate the P. In one of our measurements, only the silica concentration is high (Table 2). This can be interpreted as resulting from the addition of sand during forging. Etching with Oberhoffer's reagent outlines the thick welding seam (M2, Fig. 5), the rolling direction and the P segregation. Etching with nital mainly shows a ferritic structure (Fig. 6). The grains vary in size (between ASTM grain sizes of 4 to 8) and are recrystallized. The ferrite shows local ghost structures, and includes Neumann bands and some ne

| Elements              | Ni/Co |   |      |   |     | Cr |     | Со  |     | Cu  |     |    | Ag |     |    |   | C* mass% |
|-----------------------|-------|---|------|---|-----|----|-----|-----|-----|-----|-----|----|----|-----|----|---|----------|
| Median mg/kg          | 3.1   | < | 3400 | < | 40  | 80 | 20  | 270 | 840 | 340 | 400 | 20 | <  | 10  | 10 | < | 0-0.2    |
| Detection limit mg/kg | -     | 4 | 65   | 8 | 1   | 10 | 2   | 1   | 3   | 1   | 2   | 3  | 1  | 0.4 | 1  | 3 | -        |
| RSD %                 | 3     | 1 | 16   | - | 168 | 55 | 114 | 6   | 6   | 7   | 19  | 7  | -  | 17  | 22 | - | -        |

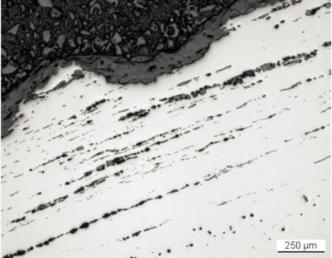

\*visually estimated

Table 1: Chemical composition of the metal (<: below the detection limit). Method of analysis: LA-ICP-MS, Lab Inorganic Chemistry, ETH.

| Structure                     | Location    |    | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | P <sub>2</sub> O <sub>5</sub> | S0 <sub>3</sub> | K <sub>2</sub> 0 | CaO | TiO <sub>2</sub> | V <sub>2</sub> O <sub>5</sub> | Cr <sub>2</sub> O <sub>3</sub> |    | Fe0 |     | SiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> |
|-------------------------------|-------------|----|--------------------------------|------------------|-------------------------------|-----------------|------------------|-----|------------------|-------------------------------|--------------------------------|----|-----|-----|--------------------------------------------------|
| n. d.                         | steel       | <1 | <1                             | 6                | 23                            | <               | <                | 9   | <                | 2                             | 2                              | <1 | 60  | 104 | Around 8                                         |
| Glassy matrix                 | steel       | 1  | <                              | 17               | 18                            | <               | <                | <   | <                | <                             | <                              | <1 | 66  | 103 | Around 67                                        |
| White plates (wustite)        | steel       | <  | <                              | 1                | <                             | <               | <                | <   | 1                | <                             | <                              | <  | 97  | 101 | Around 3                                         |
| Droplet (wustite)             | steel       | <  | 1                              | 1                | 1                             | <               | <                | <1  | <                | 2                             | <                              | <  | 99  | 105 | Around 1                                         |
| Slag with plates and droplets | steel       | 1  | <1                             | 12               | 21                            | <               | <                | 3   | <                | <1                            | <                              | <  | 69  | 107 | Around 20                                        |
| n. d.                         | steel       | 1  | 2                              | 12               | 29                            | 1               | 1                | 14  | <1               | <                             | <                              | 1  | 47  | 109 | Around 6                                         |
| Wustite in glass              | P-rich iron | <1 | <1                             | 7                | 17                            | 1               | <                | 4   | <                | 1                             | <                              | 1  | 77  | 109 | Around 9                                         |
| n. d.                         | P-rich iron | <  | 1                              | 1                | 5                             | <               | <                | <   | <1               | 3                             | 2                              | <  | 94  | 107 | Around 1                                         |
| n. d.                         | P-rich iron | 1  | 1                              | 5                | 11                            | <               | <                | 4   | 1                | 4                             | <                              | <1 | 81  | 109 | Around 5                                         |
| n. d.                         | P-rich iron | <  | 1                              | 2                | 4                             | <               | <                | 1   | 1                | 5                             | <1                             | <  | 84  | 99  | Around 2                                         |
| n. d.                         | P-rich iron | 1  | <                              | 9                | 13                            | <               | <                | 3   | <                | 2                             | <1                             | 1  | 68  | 98  | Around 18                                        |
| n. d.                         | P-rich iron | 1  | 1                              | 9                | 23                            | <               | <                | 10  | <                | <1                            | <                              | 1  | 54  | 100 | Around 8                                         |

Table 2: Chemical composition of the slag inclusions (mass %, <: below the detection limit). Method of analysis: SEM/EDS, Laboratory of Analytical Chemistry, Empa.

Fig. 4: Micrograph of the metal sample from Fig. 3 (reversed picture, detail), unetched, bright field. In white the metal, in grey the corrosion layer. There are numerous slag inclusions in the metal all orientated to form rows. Some inclusions are empty, probably due to sample preparation,



Credit HE-Arc CR



Fig. 5: Micrograph of the metal sample from Fig. 3 (reversed picture, detail), etched with Oberhoffer's reagent, bright field. The etching shows the P segregation near the welding line and outlines the irregular P distribution in the metal (white P-rich areas, dark P-poor areas),



Fig. 6: Micrograph of the metal sample from Fig. 3 (detail), nital etched, bright field. The metal presents a ferritic structure,

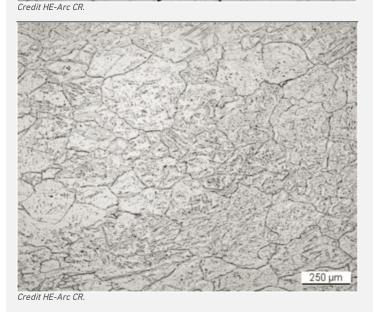
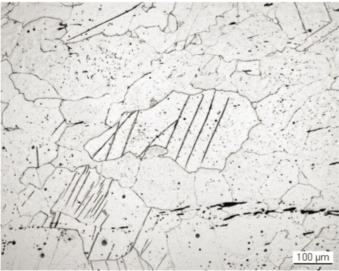




Fig. 7: Micrograph of the metal sample from Fig. 3 (detail), nital etched, bright field. The ferrite shows a ghost structure with needles,

Fig. 8: Micrograph of the metal sample from Fig. 3 (detail), nital etched, bright field. The ferrite grains include Neumann bands,  $\,$ 



Credit HE-Arc CR.

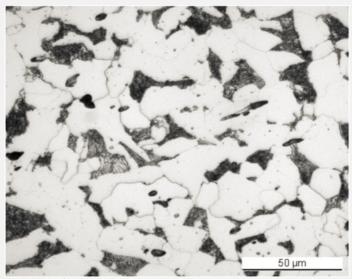



Fig. 9: Micrograph of the metal sample from Fig. 3 (detail), nital etched, bright field. The hypoeutectoid steel is constituted of ferrite in white and lamellar pearlite (in black),

Credit HE-Arc CR

Microstructure Recrystallized grains, Newman bands, ghost structure

First metal element Fe

Other metal elements P

# Complementary information

None.

## ▼ Corrosion layers

The corrosion crust is thin and irregular. It is restricted to one of the three surfaces. In bright field, the corrosion layer seems homogeneous and appears medium-grey with a fissure parallel to the metal surface (Fig. 10). Under polarised light the corrosion products near the metal surface are mostly red-orange (CP3), whereas in the outer layer they appear orange-brown (CP1) (Fig. 11). A dark-brown zone is visible between them (CP2) and contains bright inclusions with a chemical composition similar to wüstite (Table 3). This corresponds to corroded slag inclusions (internal markers). Chemical analysis (Table 3) and elemental mapping (Fig. 12) do not highlight a difference in composition of the corrosion layers, except for the corroded slag inclusions.

| Elements                                                                    |    |    | Fe | Total |
|-----------------------------------------------------------------------------|----|----|----|-------|
| Inner part, dark-brown corrosion layer (CP2)                                | 34 | <  | 61 | 96    |
| Inner part, orange corrosion products (average of 2 similar analyses) (CP3) | 34 | <  | 64 | 99    |
| Bright inclusion                                                            | 23 |    | 83 | 106   |
| Middle, orange corrosion products                                           | 36 | <1 | 64 | 101   |
| Outer orange corrosion layer (average of 3 similar analyses) (CP1)          | 34 | <1 | 62 | 97    |

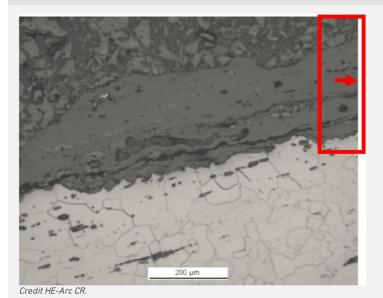



Fig. 10: Micrograph showing the metal - corrosion layer interface from Fig. 3 (reversed picture, detail), unetched, bright field. The grey corrosion layer contains bright inclusion rows. The area selected for elemental chemical distribution (Fig. 12) is marked by the red rectangle which expends beyond the micrograph,

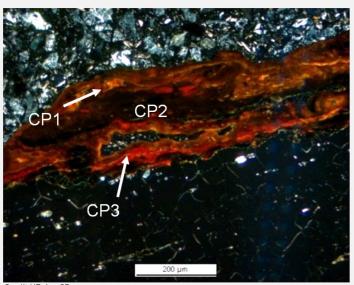



Fig. 11: Micrograph (same as Fig. 10) corresponding to the stratigraphy of Fig. 13, unetched, polarised light. We observe from bottom to top: a red-orange inner corrosion layer (CP3), followed by a dark-brown intermediate layer (CP2) and an orange-brown outer layer (CP1),

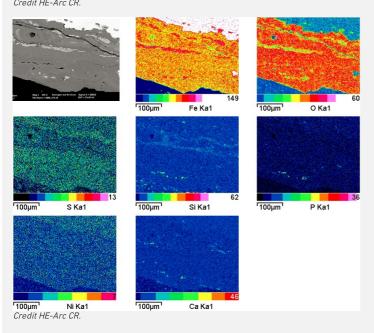



Fig. 12: SEM image, BSE-mode, and elemental chemical distribution of the selected area from Fig. 10 (inversed, detail). Method of examination: SEM/EDS, Laboratory of Analytical Chemistry, Empa,

Corrosion form

Uniform - pitting

Corrosion type

Unknown

Complementary information

None.

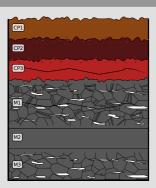



Fig. 13: Stratigraphic representation of the sample taken from the wedge part in cross-section (dark field) using the MiCorr application. The characteristics of the strata are only accessible by clicking on the drawing that redirects you to the search tool by stratigraphy representation. This representation can be compared to Fig. 11, Credit HEARC CR.

# imes Synthesis of the binocular / cross-section examination of the corrosion structure

None.

## **♥** Conclusion

The wedge was rolled, hammered and annealed from a refined, P-rich wrought iron. It was welded from at least two parts. The C distribution is irregular and shows a zone of soft steel in the middle of the iron. The indoor corrosion seems superficial, but it is possible that the sample surface was cleaned before embedding (Hadzic 2008).

# ▼ References

# References on object and sample

## References sample

1. Hadzic, N. (2008) Prüfbericht Nr. 448'051, Empa.

# References on analytic methods and interpretation

- $2.\ Boesenberg,\ J.S.\ (2006)\ Wrought\ iron\ from\ the\ USS\ Monitor:\ mineralogy,\ petrology\ and\ metallography.\ Archaeometry\ 48-4,\ 613-631.$
- 3. Dillmann, P., L'Héritier, M. (2007) Slag inclusions analyses for studying ferrous alloys employed in French medieval building: supply o materials and diffusion of smelting process. Journal of Archaeological Science 34, 1810–1823.
- 4. ASTM E112-13: Standard Test Methods for Determining Average Grain Size.