

TANG FRAGMENT OF A KNIFE HR-6567 – LEADED BRONZE – LATE BRONZE AGE – SWITZERLAND

Artefact name Tang fragment of a knife HR-6567

Authors Marianne. Senn (EMPA, Dübendorf, Zurich, Switzerland) & Christian. Degrigny (HE-Arc CR, Neuchâtel, Neuchâtel, Switzerland)

Url /artefacts/223/

▼ The object

Fig. 1: Leaded bronze tang fragment (after Rychner-Faraggi 1983, plate 35.26),

Credit HE-Arc CR.

▼ Description and visual observation

Description of the artefact Tang fragment with shiny brown patina typical of lake context. Dimensions: L = 2.9cm; Ømax. = 6.8mm; WT = 4.9g.

Type of artefact Knife

Origin Hauterive - Champréveyres, Neuchâtel, Neuchâtel, Switzerland

Recovering date Excavation in 1983-1985, layer 3

Chronology category Late Bronze Age

chronology tpq B.C.

chronology taq B.C.

Chronology comment Hallstatt B1 (1054/1037BC – 1000BC)

Burial conditions / environment Lake

Artefact location Laténium, Neuchâtel, Neuchâtel

Owner Laténium, Neuchâtel, Neuchâtel

Inv. number Hr 6567

Recorded conservation data Not conserved

▼ Study area(s)

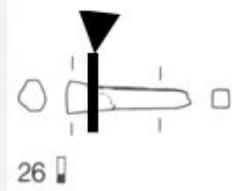


Fig. 2: Location of sampling area,

Credit HE-Arc CR.

▼ Binocular observation and representation of the corrosion structure

Stratigraphic representation: none

▼ MiCorr stratigraphy(ies) – Bi

▼ Sample(s)

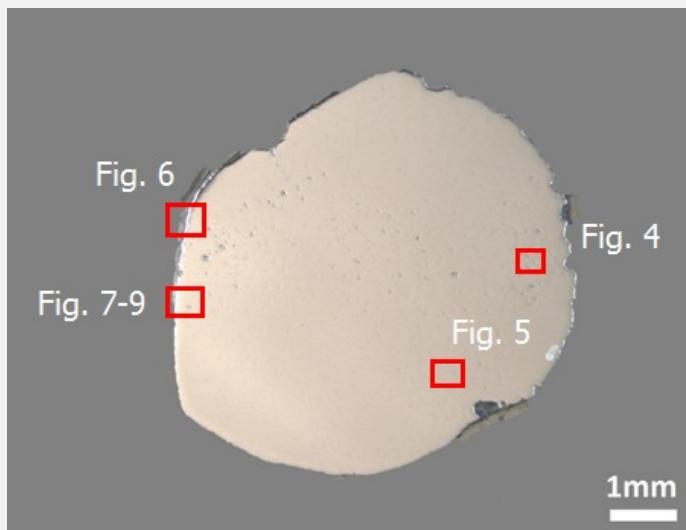


Fig. 3: Micrograph of the cross-section showing the locations of Figures 4 to 9,

Credit HE-Arc CR.

Description of sample

This cross-section shows a lateral cut through the tang (Fig. 2). Most of the corrosion crust is absent.

Alloy

Leaded Bronze

Technology

Cold worked after annealing

Lab number of sample

MAH 87-196

Sample location

Musées d'art et d'histoire, Genève, Geneva

Responsible institution

Musées d'art et d'histoire, Genève, Geneva

Date and aim of sampling

1987, metallography and corrosion characterisation

▼ Analyses and results

Analyses performed:

Metallography (etched with ferric chloride reagent), Vickers hardness testing, ICP-OES, SEM/EDX, XRD.

▼ Non invasive analysis

▼ Metal

The remaining metal is a leaded bronze (Table 1) containing numerous copper sulphide and tiny Pb inclusions (Figs. 4-6, 9 and Table 2). The porosity within the metal is high, particularly along a band through the middle of the sample (Figs. 3 and 4). The etched structure of the leaded bronze shows small, regular polygonal grains, some with twinning (Fig. 5). Strain lines appear in grains close to the metal surface (Fig. 6). The average hardness of the metal is HV1 120.

Elements	Cu	Sn	Pb	Ni	Sb	As	Co	Ag	Fe	Zn
mass%	87.52	8.02	1.46	1.04	0.81	0.60	0.24	0.21	0.05	0.03

Table 1: Chemical composition of the metal. Method of analysis: ICP-OES, Laboratory of Analytical Chemistry, Empa.

Elements	O	S	Fe	Cu	Total
mass%	1.5	20	1.0	71	93

Table 2: Chemical composition of dark-grey inclusions. Method of analysis: SEM/EDX, Laboratory of Analytical Chemistry, Empa.

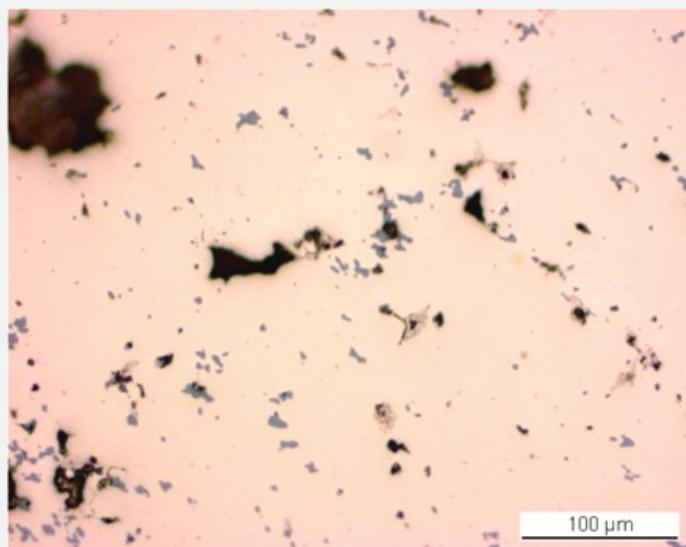


Fig. 4: Micrograph of the metal sample from Fig. 3 (detail), unetched, bright field. In pink the metal, in black the porosity and in dark-grey copper sulphide inclusions,

Credit HE-Arc CR.

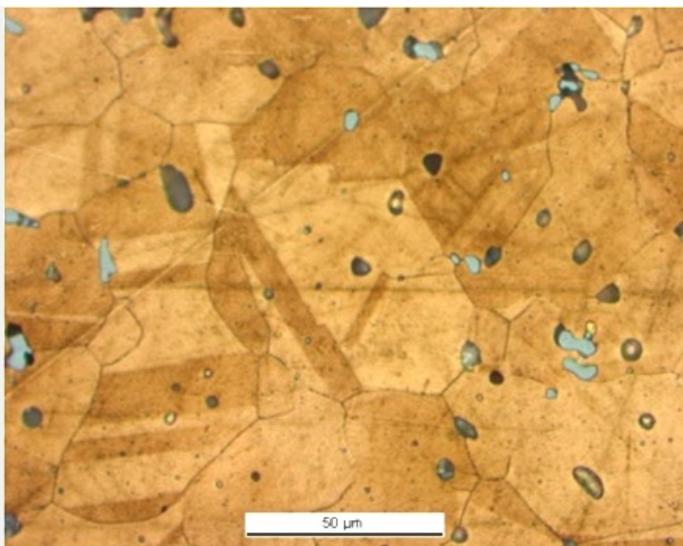


Fig. 5: Micrograph of the metal sample from Fig. 3 (detail), etched, bright field. Angular and twinned grains are revealed as well as copper sulphide inclusions in grey,

Credit HE-Arc CR.

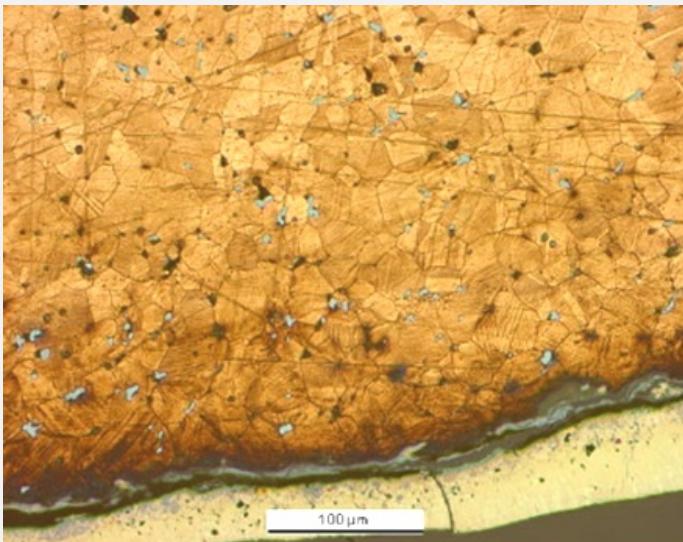


Fig. 6: Micrograph of the metal sample from Fig. 3, etched, bright field (rotated by 270°, detail). Angular grains with strain lines can be seen as well as copper sulphide inclusions in grey,

Credit HE-Arc CR.

Microstructure

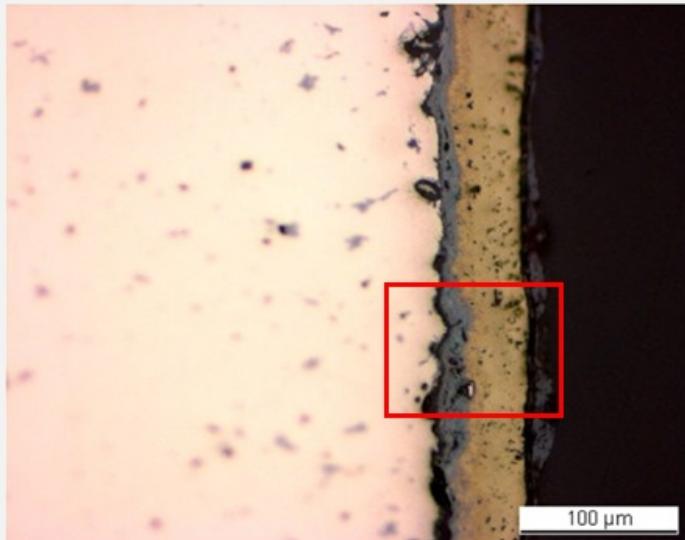
Polygonal and twinned grains + strain lines (metal surface) with pores

First metal element

Cu

Other metal elements

Ni, Sn, Pb


Corrosion layers

The metal has lost most of its original corrosion crust, the remainder having an average thickness between 60 and 190 μm (Fig. 3). In some areas up to three corrosion layers are visible (Fig. 7). In polarised light (Fig. 8), the corrosion stratigraphy appears more clearly: it is composed of a dense black inner layer, an intermediate thick brown layer with bright spots (indicating porosity) and an outer red layer with white particles. The elemental chemical distribution of the SEM image reveals that the black inner layer is Sn-rich but contains Cu, O, Ca, S and Fe (Table 3, Fig. 9). The brown layer contains S, Fe, and Cu and has a composition similar to chalcopyrite/CuFeS₂ (Table 3, Fig. 9). The red layer is an iron oxide (main elements Fe and O) and is contaminated with calcite/CaCO₃ particles (Table 3, Fig. 9). XRD analyses of the brown layer by Schweizer confirms the presence of chalcopyrite (1994, museum report (1987)).

Elements	O	Fe	Ni	Cu	Si	P	S	Ca	As	Sn	Pb	Total
CP1e, red layer	37	51	1.8	<	<	<	<	1.5	0.8	<	<	93
CP2i, brown layer	<	30	<	42	<	<	35	<	<	<	<	107

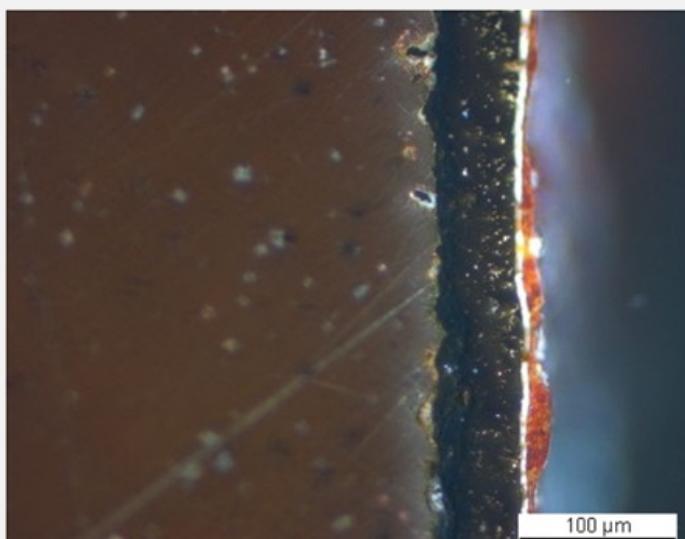

CP2i, white particles	50	<	<	0.6	<	<	<	39	<	<	<	90
CP3i, black layer	39	4.8	1.2	5.2	3.9	3.7	<	<	0.7	37	3.7	100

Table 3: Chemical composition (mass %) of the corrosion layers (from Figs. 7 and 8). Method of analysis: SEM/EDX, Laboratory of Analytical Chemistry, Empa.

Credit HE-Arc CR.

Fig. 7: Micrograph of the metal sample from Fig. 3 (reversed picture, detail), unetched, bright field. From left to right: metal (in pink), inner light-grey layer, intermediate brown layer and top dark-grey layer. The mapped area of Fig. 9 is marked by a square,

Credit HE-Arc CR.

Fig. 8: Micrograph of same area as Fig. 7, polarized light. From left to right: metal (in brown) covered with a corrosion crust consisting of a black layer, an intermediate brown layer with bright spots, a crack (white line) and a red layer with white particles,

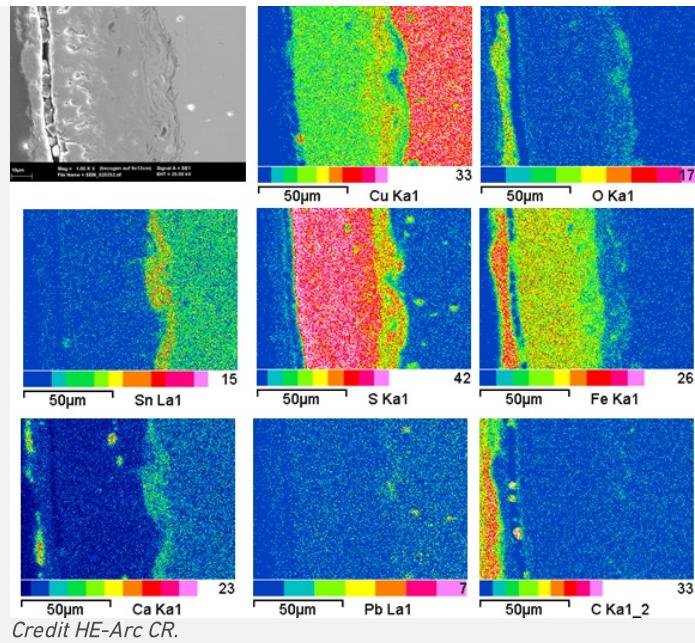


Fig. 8: SEM image, SE-mode, and elemental chemical distribution of the selected area of Fig. 6 (reversed picture). Method of examination: SEM/EDX, Laboratory of Analytical Chemistry, Empa,

Corrosion form	Uniform - pitting
Corrosion type	Type I (Robbiola)

❖ MiCorr stratigraphy(ies) – CS

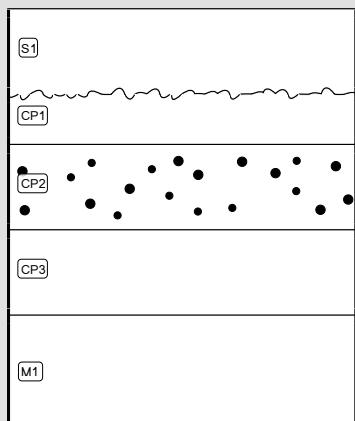


Fig. 4: Stratigraphic representation of the object in cross-section using the MiCorr application. This representation can be compared to Fig. 9.

❖ Synthesis of the binocular / cross-section examination of the corrosion structure

Corrected stratigraphic representation: none

▼ Conclusion

The tang fragment is made from a leaded bronze and has been cold worked on the top surface after annealing. The SEM/EDX examination and past XRD analyses indicate the presence of chalcopyrite in the corrosion crust, typical of lake context (Schweizer 1994), enriched with Sn close to the metal surface and depleted of Cu on the outer surface. This object was certainly abandoned rather quickly in an anaerobic, humid and S and Fe-rich environment, favouring then the formation of chalcopyrite. The limit of the original surface most probably lies between the Sn-rich inner layer and the Fe and S-rich outer layers. The presence of iron oxides on top of the copper corrosion crust has not yet been explained. The corrosion is a type 1 according Robbiola et al. 1998.

▼ References

References on object and sample

References object

1. Rychner-Faraggi A-M. (1993) Hauterive – Champréveyres 9. Métal et parure au Bronze final. Archéologie neuchâteloise, 17 (Neuchâtel).

References sample

2. Rapport d'examen, Laboratoire Musées d'art et d'histoire, Geneva GE (1987), 87-194 à 197
3. Schweizer, F. (1994) Objets en bronze provenant de sites lacustre: de leur patine à leur biographie. In: L'œuvre d'art sous le regard des sciences (éd. Rinuy, A. and Schweizer, F.), 143-157.

References on analytic methods and interpretation

4. Robbiola, L., Blengino, J-M., Fiaud, C. (1998) Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys, Corrosion Science, 40, 12, 2083-2111.