

ARMATURE FROM A CLOCK MOVEMENT MIH IV-212 - ZN AL SN CU ALLOY - MODERN TIMES

Artefact name Armature from a clock movement MIH IV-212

Authors Marianne. Senn (Empa, Dübendorf, Zurich, Switzerland) & Christian. Degrigny (HE-Arc CR, Neuchâtel, Neuchâtel, Switzerland)

Url /artefacts/971/

▼ The object

Credit HE-Arc CR.

Fig. 1: Broken armature (left) from the clock movement of a wooden wall clock (right) (after Seematter 2009),

▼ Description and visual observation

Description of the artefact Armature from the clock movement of a wooden wall clock with electric movement, broken in two elements (Fig. 1 and Fig. 2) with a heavily cracked surface.

Type of artefact Horological object

Origin Wooden wall clock

Recovering date 1902-1904

Chronology category Modern Times

chronology tpq A.D.

chronology taq A.D.

Chronology comment

Burial conditions / environment	Indoor atmosphere
Artefact location	International museum of horology (IMH), La Chaux-de-Fonds, Neuchâtel
Owner	International museum of horology (IMH), La Chaux-de-Fonds, Neuchâtel
Inv. number	MIH IV-212
Recorded conservation data	N/A

Complementary information

None.

▼ Study area(s)

Fig. 2: Location of sampling area on one of the two broken elements of the armature,

Credit HE-Arc CR.

▼ Binocular observation and representation of the corrosion structure

None.

▼ MiCorr stratigraphy(ies) – Bi

▼ Sample(s)

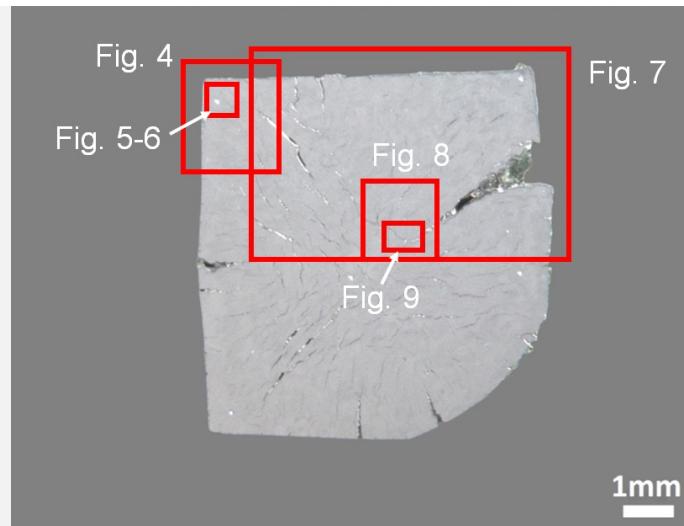


Fig. 3: Micrograph of the cross-section of the fragment sampled from the armature showing the location of Figs. 4 to 9,

Credit HE-Arc CR.

Description of sample

This sample is the complete cross-section from one of the two broken elements of the armature (Fig. 2). The metal has large cracks radiating from the centre to the outside which have deformed the armature (Fig. 3).

Alloy

Zn Al Sn Cu Alloy

Technology

As-cast

Lab number of sample

MIH-VI-212

Sample location

HE-Arc CR, Neuchâtel, Neuchâtel

Responsible institution

International museum of horology (IMH), La Chaux-de-Fonds, Neuchâtel

Date and aim of sampling

2009, metal analysis

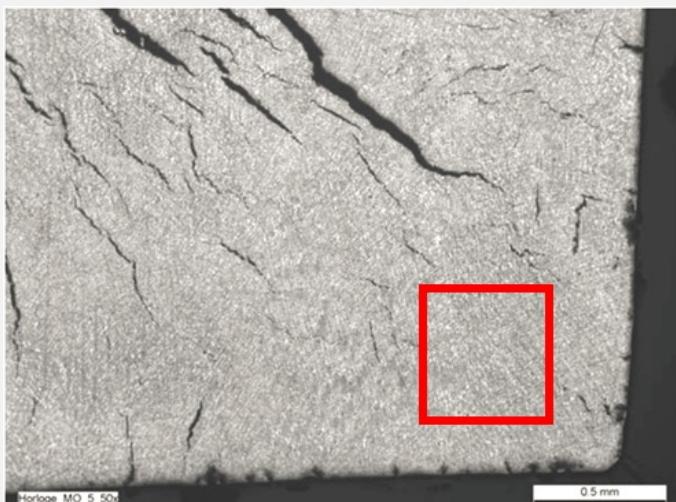
Complementary information

The metal is covered with a Ni coating.

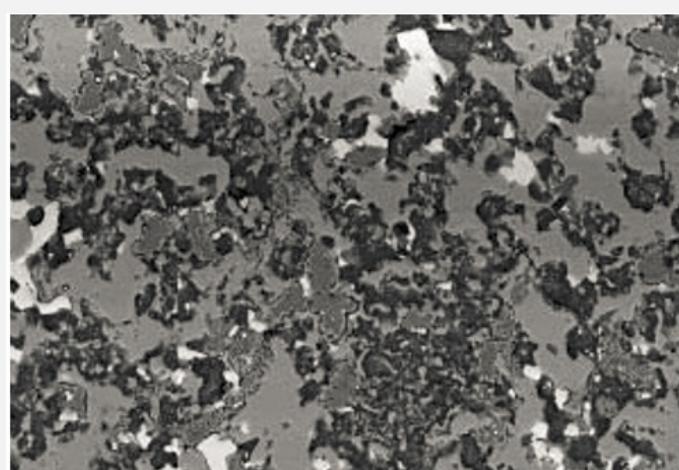
▼ Analyses and results

Analyses performed:

Metallography (unetched), Vickers hardness testing, SEM/EDS.


▼ Non invasive analysis

None.


The metal is a Zn-Al-Sn-Cu alloy (Table 1) with an average hardness of HV1 105. A fine dendritic structure is observed (Fig. 4) which consists of clearly separated Zn, Al-Cu and Sn-rich phases (Figs. 5 and 6). Pb is associated with Sn but also forms tiny nodules.

Elements	Zn	Al	Sn	Cu	Pb	Total
Metal	67	17	11	4	<1	99

Table 1: Chemical composition (mass %) of the metal (oxygen not shown). Method of analysis: SEM/EDS, Lab of Electronic Microscopy and microanalysis, IMA (Néode), HEI Arc.

Credit HE-Arc CR.

20kV [BSE] WD=22mm - CartoX_2

Credit HE-Arc CR.

Fig. 4: Micrograph of the metal sample from Fig. 3 (inverted picture, rotated by 270°, detail), unetched, bright field. A dendritic structure is visible. The micrograph of Fig. 5 is marked by a square,

Fig. 5: SEM image, BSE-mode, detail from Fig. 4 (detail), unetched, bright field. Three phases appear: in light-grey the Zn-rich phase, in dark-grey the Al and Cu-rich phase and in white the Sn-rich phase,

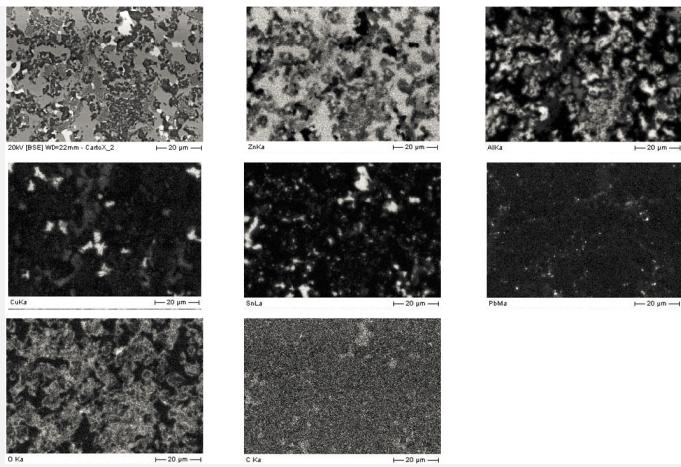


Fig. 6: SEM image, BSE-mode, and elemental chemical distribution of the selected area from Fig. 5. Method of examination: SEM/EDS, Lab of Electronic Microscopy and microanalysis, IMA (Néode), HEI Arc,

Credit HE-Arc CR.

Microstructure

Fine dendritic structure (no cohesion between the phases)

First metal element

Zn

Other metal elements

Al, Cu, Sn

Complementary information

None.

Corrosion layers

The Zn-rich phase is heavily oxidised internally (Fig. 6). The corrosion has developed throughout the entire metal body, generating cracks (Figs. 7 and 8). The cracks are Zn, O and C-rich (Fig. 9) and could be composed of zinc carbonate.

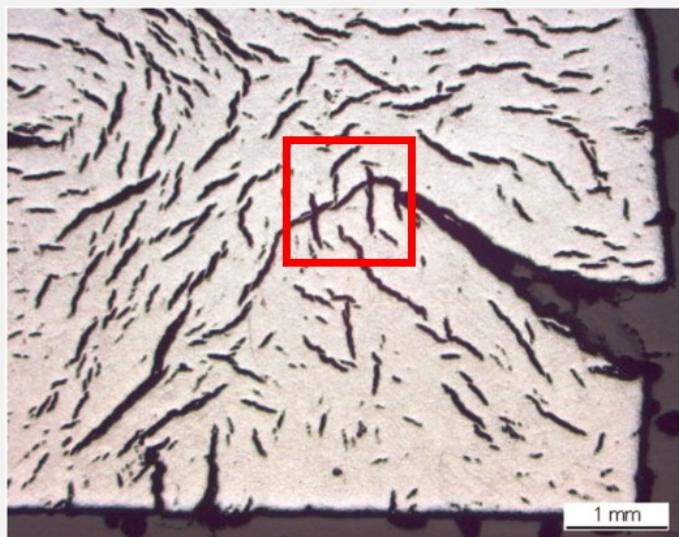


Fig. 7: Micrograph showing the metal - "corrosion products" interface from Fig. 3 (reversed picture, detail), unetched, bright field,

Credit HE-Arc CR.

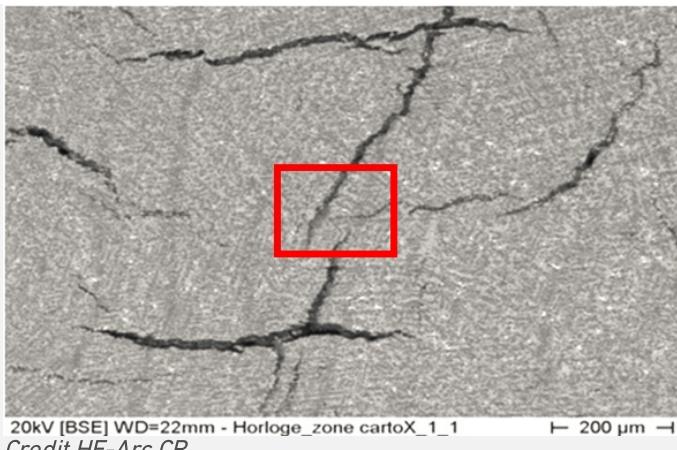


Fig. 8: Micrograph of the metal sample, detail from Fig. 7 (reversed and rotated by 90°), unetched, bright field. A dendritic structure is visible. The area selected for elementary mapping (Fig. 9) is marked by a rectangle. Can be compared to the stratigraphy representation of Fig. 10,

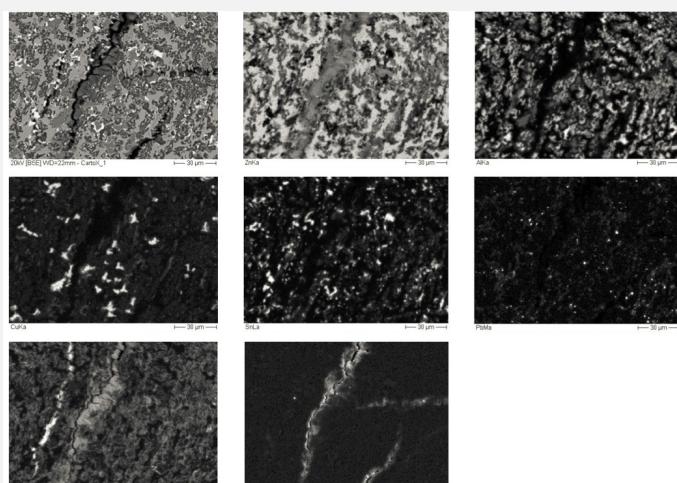


Fig. 9: SEM image, BSE-mode, and elemental chemical distribution of the selected area from Fig. 8 (detail). Method of examination: SEM/EDX, Lab of Electronic Microscopy and microanalysis, IMA (Néode), HEI Arc,

Corrosion form Internal cracking

Corrosion type zinc pest

Complementary information

None.

▽ MiCorr stratigraphy(ies) – CS



Fig. 10: Stratigraphic representation of the fragment sampled from the armature in cross-section (dark field) using the MiCorr application. The characteristics of the stratum are only accessible by clicking on the drawing that redirects you to the search tool by stratigraphy representation. This representation can be compared to Fig. 8, Credit HE-Arc CR.

▽ Synthesis of the binocular / cross-section examination of the corrosion structure

None.

▼ Conclusion

The armature of the clock mechanism is constituted of a ZnAlSnCu alloy. The absence of cohesion between the different phases has led to the penetration of O during the manufacturing of the alloy. Small original cracks have developed further eventually causing the armature to break. This phenomenon is called zinc pest. It develops mainly on cast objects, starting with localised modifications (blisters and pits, Cramer and Covino 2005).

It appears that the armature was made of an unsuccessful experimental alloy. The IMH has in its collection a similar mechanism with the same armature but made of an another more stable alloy, suggesting then that our armature was some kind of prototype element.

▼ References

References on object and sample

References object

1. Seemater, V. (2009) Conservation-restauration d'une horloge à mouvement électrique, rapport interne HE Arc CR.

References sample

2. Seemater, V. (2009) Conservation-restauration d'une horloge à mouvement électrique, rapport interne HE Arc CR.

References on analytic methods and interpretation

3. Cramer, S.D., Covino Jr., B.S. volume editors. (2005). ASM Handbook, 13B, 37.